Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS ES and T Water ; 2(11):2094-2104, 2022.
Article in English | Scopus | ID: covidwho-2133180

ABSTRACT

Congregate living poses one of the highest risk situations for the transmission of respiratory viruses including SARS-CoV-2. University dormitories exemplify such high-risk settings. We demonstrate the value of using building-level SARS-CoV-2 wastewater surveillance as an early warning system to inform when prevalence testing of all building occupants is warranted. Coordinated daily testing of composite wastewater samples and clinical testing in dormitories was used to prompt the screening of otherwise unrecognized infected occupants. We overlay the detection patterns in the context of regular scheduled occupant testing to validate a wastewater detection model. The trend of wastewater positivity largely aligned well with the clinical positivity and epidemiology of dormitory occupants. However, the predictive ability of wastewater-surveillance to detect new positive cases is hampered by convalescent shedding in recovered/noncontagious individuals as they return to the building. Building-level pooled wastewater-surveillance and forecasting is most productive for predicting new cases in low-prevalence instances at the community level. For higher-education facilities and other congregate living settings to remain in operation during a pandemic, a thorough surveillance-based decision-making system is vital. Building-level wastewater monitoring on a daily basis paired with regular testing of individual dormitory occupants is an effective and efficient approach for mitigating outbreaks on university campuses. © 2012 American Chemical Society. All rights reserved.

2.
Microbiology Spectrum ; 10(1):13, 2022.
Article in English | Web of Science | ID: covidwho-1790201

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unprecedented event requiring frequent adaptation to changing clinical circumstances. Convalescent immune plasma (CIP) is a promising treatment that can be mobilized rapidly in a pandemic setting. We tested whether administration of SARS-CoV-2 CIP at hospital admission could reduce the rate of ICU transfer or 28-day mortality or alter levels of specific antibody responses before and after CIP infusion. In a single-arm phase II study, patients >18 years-old with respiratory symptoms with confirmed COVID-19 infection who were admitted to a non-ICU bed were administered two units of CIP within 72 h of admission. Levels of SARS-CoV-2 detected by PCR in the respiratory tract and circulating anti-SARS-CoV-2 antibody titers were sequentially measured before and after CIP transfusion. Twenty-nine patients were transfused high titer CIP and 48 contemporaneous comparable controls were identified. All classes of antibodies to the three SARS-CoV-2 target proteins were significantly increased at days 7 and 14 post-transfusion compared with baseline (P < 0.01). Anti-nucleocapsid IgA levels were reduced at day 28, suggesting that the initial rise may have been due to the contribution of CIP. The groups were well-balanced, without statistically significant differences in demographics or co-morbidities or use of remdesivir or dexamethasone. In participants transfused with CIP, the rate of ICU transfer was 13.8% compared to 27.1% for controls with a hazard ratio 0.506 (95% CI 0.165-1354), and 28-day mortality was 6.9% compared to 10.4% for controls, hazard ratio 0.640 (95% CI 0.124-3.298). IMPORTANCE Transfusion of high-titer CIP to non-critically ill patients early after admission with COVID-19 respiratory disease was associated with significantly increased anti-SARSCoV-2 specific antibodies (compared to baseline) and a non-significant reduction in Ku transfer and death (compared to controls). This prospective phase II trial provides a suggestion that the antiviral effects of CIP from early in the COVID-19 pandemic may delay progression to critical illness and death in specific patient populations. This study informs the optimal timing and potential population of use for CIP in COVID-19, particularly in settings without access to other interventions, or in planning for future coronavirus pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL